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Abstract. The emergence of social bots within online social networks (OSNs)
to diffuse information at scale has given rise to many efforts to detect them.
While methodologies employed to detect the evolving sophistication of bots
continue to improve, much work can be done to characterize the impact of bots
on communication networks. In this study, we present a framework to describe
the pervasiveness and relative importance of participants recognized as bots in
various OSN conversations. Specifically, we harvested over 30 million tweets
from three major global events in 2016 (the U.S. Presidential Election, the
Ukrainian Conflict and Turkish Political Censorship) and compared the con-
versational patterns of bots and humans within each event. We further examined
the social network structure of each conversation to determine if bots exhibited
any particular network influence, while also determining bot participation in key
emergent network communities. The results showed that although participants
recognized as social bots comprised only 0.28% of all OSN users in this study,
they accounted for a significantly large portion of prominent centrality rankings
across the three conversations. This includes the identification of individual
bots as top-10 influencer nodes out of a total corpus consisting of more than
2.8 million nodes.
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1 Introduction

The increased dependency on online social networks (OSNs) for information and the
unprecedented ability to instantaneously message global populations provides an
opportunity to control or exploit the narrative of online conversations. Attempting to
control or exploit the narrative of a certain topic becomes much easier in OSNs as
‘digital gatekeepers’ can employ social bots—computer algorithms designed to mimic
human behavior and interact with humans in an automated fashion—to amplify a
specific position or drown out its opposition at scale. This includes increasing the
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spread of fake news by orders of magnitude through a directed bot campaign [1]. The
evolvement of social bot sophistication is a primary concern, as it has become very
hard for humans to discern whether they are engaging in dialogue with a human or a
bot [2]. Given that recent studies estimate that social bots account for 9–15% of all
Twitter accounts [3, 4], it is essential to understand the implications associated with
human and machine dialogue, either intentional or not.

Recent social bot research continues to build initial essential knowledge on the
classification and detection of social bots [4–8]. However, the establishment of social
bot norms is difficult and predictively elusive given the evolving nature of bot
sophistication. For this reason, studies continue to discover bot activity that does not
align with previously published conceptions [9]. Beyond the necessary continued work
associated with improved bot detection methods to move closer to ground truth dis-
covery, there is also a growing need to present novel evaluation methodologies to better
understand the effects of currently detected bots within social media conversations.
Promising recent studies applying multidisciplinary approaches to social bot analysis
include classifying bot emotion [10], determining the political agenda of bots [11] and
distorting political discourse with bots [12–14].

In this paper, we present a unique methodological framework to comparatively
analyze evidence of social bots found within OSN Twitter conversations about three
major global events in 2016: (1) the United States Presidential Election, (2) the Ukraine
Conflict and (3) Turkish Online Political Censorship. First, we conducted a compar-
ative descriptive statistical analysis of these Twitter conversations to determine the
characteristics of human and social bot tweeting patterns. We then sought to determine
the relative influence of social bots by applying social network analysis techniques to
each of the associated conversation’s constructed retweet networks. In total, we eval-
uated more than 30.4 million tweets generated by 5.2 million distinct Twitter users, of
which, we recognized 14,661 users as bots responsible for 2.1 million tweets.

The results of this study showed that social bot communication patterns were fairly
consistent across the various observed online conversations. We found bots to have a
higher engagement rate than humans for both in-group and cross-communication. Most
interestingly, although online conversation participants recognized as social bots
comprised only 0.28% of all OSN users in this study, they accounted for a significantly
large portion of prominent centrality rankings across the three online conversations. In
total, this work provides a new contribution to the growing study of social bots by
applying social network analysis techniques across multiple online conversations to
help determine the relative pervasiveness and importance of detected bots.

2 Related Work

The term bot has broad meaning in the context of technology and Internet applications,
since all automated services or applications could be construed as bots. For the purpose
of this paper, we restrict our definition of bots, or social bots, to automated software or
computer algorithms designed to mimic human behavior and/or engage with human
actors within online social networks. Many recent works have contributed to the
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growing corpus of knowledge capturing social bot features that differentiate social-bot
generated activity from human-generated activity in OSNs [6, 7, 15].

Some researchers have not only published their research on bot detection
methodologies and findings but have also transitioned their work to open-source bot
detection platforms for other researchers to use via a web application or an application
programming interface (API). Davis et al. [7] provide access to Botometer (formerly
known as BotOrNot), which assesses the likelihood of a Twitter account being a bot by
using a supervised Random Forest applied to extracted account features. Chavoshi
et al. [5] published DeBot, which employs an unsupervised warped correlation model
to detect Twitter bots rather than feature extraction.

Published research analyzing detected bots in specific OSNs has increased as the
prevalence of bots has risen. Such studies include examining bot evidence in the
following use-cases: the 2016 U.S. presidential election [4, 16], Venezuelan political
public opinion [13], the Syrian civil war [9], the Brexit Referendum [14], the Ukrainian
conflict [11, 17] and Russian politics [8]. Most methodologies are limited to initial
descriptive statistical and temporal analyses of the human versus bot tweet volumes.
Although highly relevant contributions, these efforts focus on single events. As Kušen
and Strembeck [10] point out in their recent analysis of bot emotion across multiple
events, bot studies focused on sole events make it difficult to generalize findings across
this growing topic of interest.

3 Methodology

In order to understand the patterns of bots across multiple global events and determine
the relative bot impact within associated online conversations, this study employed a
combination of comparative descriptive statistical analysis and social network analysis
applications. This multi-faceted approach expands the literature of social bot analysis
by comparatively analyzing multiple OSN use-cases and contributes new techniques to
the field of bot research by adapting social network analysis methods to measure and
define the impact or influence of social bots. The remainder of this section will present
in detail the methodology steps used in this study as depicted in Fig. 1.

Fig. 1. Overall methodology to analyze bot evidence across multiple Twitter OSN conversations.
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3.1 Data

This study focused on three major global online conversations harvested solely from
Twitter in 2016. Summarized descriptions of each event conversation are as follows:
(1) U.S. Presidential Election (Feb. 1–29, 2016): a one-month period which captured
the narrative surrounding the Republican and Democratic party primary races prior to
the U.S. general election when it became apparent that then-candidate Donald Trump
could win his party’s nomination, (2) Ukraine Conflict (Aug. 1–31, 2016): a one-month
period which captured the narrative surrounding the ongoing conflict in Ukraine as
military activity and political rhetoric intensified between Russia and Ukraine around
the 25th anniversary of Ukrainian independence from Russia, (3) Turkish Political
Censorship (Dec. 1–31, 2016): a one-month period which captured Turkish political
conversations before, during and after two distinct periods of censorship when the
Turkish government banned Turkish citizens from using Twitter.

We crafted and submitted relevant key words for each of these events to extract
associated tweets from the Twitter Standard Search API. The volumes of tweets
returned were as follows: 24.8 million (U.S. Presidential Election), 1.4 million
(Ukraine Conflict), 4.3 million (Turkish Censorship). Given the resulting large tweet
volumes, all initial data storage and pre-processing for normalization took place in an
Amazon Web Services EC2 t2.2xlarge instance (8 vCPUs/32GiB). This allowed for
rapid processing and the creation of individual graph objects for more rapid data
analysis use at the local compute level.

3.2 Bot Enrichment

To determine the presence of bots within the acquired Twitter conversations, we
leveraged the DeBot open-source bot detection platform [5]. Our decision to use DeBot
was two-fold. First, our corpus of tweets came from 2016, so we required access to
historical bot evidence, which only DeBot currently provides. Second, the performance
of DeBot’s unsupervised warped correlation process has outperformed other bot
detection platforms to date [18]. To determine bot presence, we extracted tweet author
names from our harvested tweet corpus and submitted them for classification via the
DeBot API. We then merged the returned results with our existing database and labeled
each tweet user as a bot (or not) and annotated the source of bot classification. We
purposely created automated scripts to execute this enrichment phase with the hope of
accounting for other bot detection services in the future.

In total, this enrichment process classified 14,661 Twitter users as bots, which
accounted for just 0.28% of total tweet corpus users. This relatively small popula-
tion of users classified as bots was responsible for publishing 2.1 million tweets, or
6.8% of all tweets in this study. Table 1 provides detailed values for each event
conversation.
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3.3 Construct Retweet Network

Retweets accounted for 57.8% of all tweets in this study, with the Turkey Censorship
conversation exhibiting the highest retweet density at 65.6%, followed by 57.8% for
the U.S. Election conversation and 49.8% for the Ukraine Conflict conversation. The
parsed retweets from the originally harvested tweets served as the basis for the con-
struction of retweet networks for each conversation. These resulting retweet networks
serve as the primary artifacts required to examine the conversation via social network
applications that include centrality analysis and community detection.

To reveal the network structure from the harvested Twitter conversations, we
constructed retweet networks for each of the events in this study. The act of a Twitter
user ‘retweeting’ a message of an originally authored tweet establishes the basis for an
edge between two nodes, or users, in the retweet network. Specifically, when a Twitter
user (X) retweets an original tweet message from a given user (Y), then we assign a
directed edge weight value of 1 for initial retweets or add to the cumulative weight for
existing edges. The resulting directed networks for each of the conversations were as
follows: 2,557,805 nodes / 8,985,736 edges (U.S. Election), 250,541 nodes / 537,459
edges (Ukraine Conflict), 1,075,833 nodes / 2,224,939 edges (Turkish Censorship).

3.4 Analyze Data

The final phase of this study’s methodology was the application of a multi-faceted data
analysis approach to the processed data from the three online conversations. Recall that
the main purpose of this work was to identify potential common characteristics of
social bots across multiple online conversations and ascertain any in-group (bot-to-bot)
or cross-group (bot-to-human/human-to-bot) tendencies. Additionally, we sought to
classify the overall relative importance of bots within the conversations by examining
bot positions within the social structure of the retweet networks and associated bot
membership within any emergent communities of said networks. Section 4 follows
with detailed subsections discussing the specific methods used to achieve the purpose
described above.

Table 1. Harvested Twitter Corpus Overview

Corpus Tweets Retweets Users

United States Election 24,773,795 14,321,387 3,472,114
Bot Source (% of total) 1,882,809 (7.60%) 1,452,155 (10.14%) 6,875 (0.20%)
Ukraine Conflict 1,370,363 681,806 383,237
Bot Source (% of total) 55,718 (4.07%) 34,938 (5.12%) 2,486 (0.65%)
Turkey Censorship 4,327,802 2,837,059 1,390,362
Bot Source (% of total) 126,352 (2.92%) 83,582 (2.95%) 5,300 (0.38%)
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4 Results and Discussion

4.1 Bot and Human Participation Rates

To directly compare the conversation participation rates between bot and human
authors, we constructed a cumulative distribution frequency (CDF) plot depicting tweet
volume per author for each of the online conversations. The resulting CDFs serve as
comparative artifacts between the author types and the various conversations. In
addition, we conducted a two-sample Kolmogorov–Smirnov (KS) test to return a D
statistic metric that captures the absolute max distance between the bot and human
distributions for each of the conversations.

The CDFs, depicted in Fig. 2, show similar general participation rate trends for
both bots and humans across all conversations. The resulting distributions all exhibit a
‘many-some-few’ fat-tail distribution, with most of the authors having extremely low
tweet volume (i.e. fewer than 10 tweets), some authors with higher tweet volumes (i.e.
10 < x < 1000) and very few authors with high tweet volumes (i.e. x = 1000+).
Additionally, we observed that human authors account for the largest tweet volumes
per author across all conversations and have a higher concentration of low volume
authors accounting for all tweet volumes.

The KS test results between bot and human authors highlight the major difference in
low tweet volume authors accounting for much larger portions of the entire tweet
conversation by humans. The conversations returned D statistic values of 0.529, 0.408,
and 0.419 for the U.S. Election, Ukraine Conflict and Turkish Censorship conversa-
tions, respectively. These maximum values were all observed where the tweet volume
per author was a single tweet as shown in each plot’s associated inset zoom.

Fig. 2. Cumulative distribution (CDF) plots of tweet volume per human (blue) and bot (red) for
each online conversation: (a) U.S. Election, (b) Ukraine Conflict and (c) Turkish Censor-
ship. Inset zooms provide granularity to capture the high density of authors with low tweet
volumes.
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4.2 In-Group and Cross-Group Communications

Figure 3 presents a consolidation of all in-group and cross-group communication
frequencies observed in this study. We define in-group communication as retweet
edges between like types of authors (i.e. bots retweeting bots or humans retweeting
humans), while cross-group communication refers to retweets between different types
of authors (i.e. bots retweeting humans or humans retweeting bots). While low retweet
volumes appear to dominate for in-group and cross-group conversations across all of

Fig. 3. Frequency distribution plots for (a) U.S. Election, (b) Ukraine Conflict and (c) Turkish
Censorship retweets of in-group bot conversations (row 1), cross-group bot and human
conversations (rows 2 and 3) and in-group human conversations (row 4).
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the online conversations, we see increased retweet rates for all conversations initiated
by a bot author, as opposed to a human author. For all three online conversations, each
bot-to-bot in-group and bot-to-human cross-group conversation has a relatively higher
average edge weight. The bot-to-bot author average edge weight is 160%, 272% and
102% higher than the human-to-human author average edge weight for the U.S.
Election, the Ukrainian Conflict and Turkish Censorship, respectively. This suggests
that either bots seek persistent contact more so than humans, or the high rate of single
retweet volumes between so many different human edges dilutes any persistent human-
to-human connections that exist.

4.3 Centrality Analysis

In social network analysis, centrality measurements allow for us to distinguish nodes in
a network as more prominent, or important, than other nodes based on their relative
position in the structure of the network [19]. In terms of our study, we sought to
classify the overall relative importance of bots within our online conversations of
interest by using centrality measures. To do so, we calculated three relatively common
centrality measures (degree, eigenvector, and betweenness) for each online conversa-
tion. Degree centrality is the most straightforward centrality, as it is calculated from the
total number of direct connections a node shares with other nodes throughout the
network. One could view degree centrality as a level of popularity in a network.
Eigenvector centrality is a weighted sum of both direct and indirect connections for a
given node that is based on the individual degree centrality score of each node with
which it shares an edge [20]. Thus, we can infer eigenvector centrality as a level of
entire network influence. Betweenness centrality is the degree to which a node falls on
the shortest path between other nodes in the network [21]. Therefore, we can char-
acterize betweenness as a potential measure of information flow in a network.

The consolidated results for the three centrality measure calculations across all
three conversations are presented in Fig. 4. We binned the results to capture the density
of bots falling within the Top-N centrality valuations (where, N= 1000, 100, 50 or 10).
Of note, we provide the raw number of bots and the total percentage of bots comprising
the given population of Top-N centrality values. The results clearly show that authors
identified as bots, though they comprise just 0.28% of total conversation authors in this
study, account for a significantly large portion of prominent centrality rankings for each
of the centrality measures across all conversations. Showing penetration into conver-
sations as an influencer, the eigenvector valuations show that bots account for 43% of
the top-100 nodes in the U.S. Election conversation, to include four of the top-10
centrality value positions. In the Ukraine Conflict dialogue, bots show a gaining
dominance of top eigenvector values, as the bot population accounts for 21%, 30% and
50% at the top-100, top-50 and top-10 bins respectively.
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Many studies point to the positive correlation of computed centrality values given
the conceptual overlap that exists between the inputs required of the calculations [22].
Given an expected correlation of centrality values, lack of correlation evidence pro-
vides an opportunity to further investigate a node for interesting behavior. We con-
ducted such an analysis by plotting correlation plots against each other as depicted in
Fig. 5.

The depicted centrality correlation plots in Fig. 5 provide compelling insights into
some of the observed conversations. First, in the U.S. Election conversation plot
(Fig. 5a), we see very few correlation outliers on the plot. Interestingly, the top
eigenvector and betweenness centrality node is the same human author, in this case,
then-candidate Donald Trump (@realDonaldTrump). Conversely, we see far more
correlation outliers in the Ukraine conflict conversations. Specifically, the most
divergent nodes are bots, which could be cause for greater investigation as to their
specific tweeting behavior. In the eigenvector versus degree Ukraine plot (Fig. 5c), the
two most ‘influential’ nodes according to eigenvector centrality, which are bots, are
actually not that popular given low degree centralities. This suggests these bots were
able to infiltrate the conversation network by acquiring connections with popular
nodes, while avoiding popularity, or detection, themselves.

Fig. 5. Correlation of centrality measures for select centrality comparisons: (a) U.S. Election
eigenvector versus betweenness analysis, (b) Ukraine Conflict eigenvector versus betweenness
analysis and (c) Ukraine Conflict eigenvector versus degree analysis.

Fig. 4. Bot evidence in Top-N (N = 1000/100/50/10) [(a) degree (b) eigenvector (c) between-
ness] centrality values for: U.S. Election (blue), Ukraine Conflict (green) and Turkish Censorship
(red).
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4.4 Community Detection

Community detection is another common application in social network analysis that
allows researchers to uncover localized sub-graphs, or communities, of highly con-
nected nodes that are otherwise less connected to the remainder of the network [23].
The Louvain [24] method is one such community detection algorithm that is highly
applicable for the identification of emergent community structure in large-scale net-
work analyses. It seeks an undefined number of emergent communities by executing a
two-stage greedy heuristic that iteratively optimizes modularity locally and culminates
when global network modularity reaches a maximum value. For our purposes, we
sought to observe the density of bots within any defined community structure of the
online conversations. Specifically, we wanted to determine if bots clustered among
themselves or if they dispersed among the larger human author communities, which
would provide further explanation for our in-group and cross-group communication
findings in Sect. 4.2.

Table 2 outlines the evidence of bot density within the most populated emergent
communities detected for each online conversation. In total, we discovered 71.2% of all
bots within the top-5 most populated communities for the U.S. Election conversation,
with 75.9% and 53.1% for the Ukraine Conflict and Turkish censorship conversations,
respectively. Although we see a dispersal of bot populations throughout all of the top
communities, there are multiple instances in which the bot density is much greater than
the community population percentage in relation to the total network population. This
is representative of the higher in-group communication rates found between bots in
Sect. 4.2, while the general dispersal of bots supports the findings of cross-group
communication evidence.

Table 2. Bot density of largest emergent communities.

Comm. U.S. Election Ukraine Conflict Turkish Censorship
Bot Count
(% of comm.)

Comm. Size
(network %)

Bot Count
(% of comm.)

Comm. Size
(network %)

Bot Count
(% of comm.)

Comm. Size
(network %)

1 901
(15.69%)

1,009,872
(39.48%)

454
(21.25%)

58,397
(23.30%)

787
(16.39%)

268,311
(24.94%)

2 1305
(22.73%)

900,076
(35.19%)

166
(7.78%)

45,330
(18.09%)

277
(5.77%)

146,350
(13.60%)

3 1345
(23.43%)

308,040
(12.04%)

267
(12.50%)

29,310
(11.69%)

1172
(24.40%)

107,224
(9.97%)

4 337
(5.87%)

84,733
(3.31%)

12
(0.06%)

15,536
(6.20%)

287
(5.98%)

86,550
(8.04%)

5 242
(4.20%)

59,441
(2.32%)

616
(28.84%)

15,439
(6.16%)

27
(0.56%)

48,813
(4.54%)
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5 Conclusion and Future Work

In summary, we presented a framework to characterize the pervasiveness and relative
importance of bots in various OSN conversations of three significant global events in
2016. In total, we harvested more than 30 million tweets from the U.S. Presidential
Election, the Ukrainian Conflict and Turkish Political Censorship and compared the
conversational patterns of bots and humans within each event. We further examined the
social network structure of each online conversation to determine if bots exhibited
particular influence in a network, while also determining bot participation in key
emergent network community subgraphs. The results showed that although Twitter
participants identified as social bots comprised only 0.28% of all OSN users in this
study, they accounted for a significantly large portion of prominent centrality rankings
across the three conversations. This includes the identification of individual bots as top-
10 influencer nodes out of a total corpus consisting of more than 2.8 million nodes.
Additionally, we observed that the most influential social bots had relatively low
popularity, or degree centrality, suggesting influence can be obtained without popu-
larity. In the case of social bots, popularity could be seen as a negative characteristic if
trying to avoid detection. This finding is supported by previous findings in social media
studies showing influence in a network is not necessarily driven by popularity [25].

While this study contributes to the nascent literature of social bot analysis by
introducing a comparative analysis framework based on social network analysis
techniques, there are limitations to take into consideration. As Tufekci [26] asserts,
social media analyses must state their limitations in terms of validity and representa-
tiveness when attempting to account for issues such as the over-emphasis of single
platforms and sampling biases. These issues are not unique to this study. However, we
did limit our research to just one platform (i.e. Twitter) that includes a sampling bias.
Though the methodology presented is not bound to a particular social media platform
type, we were limited to currently available bot detection sources, which focus solely
on Twitter. As the literature expands in the near future, we hope to account not only for
additional bot detection services using Twitter, but additional social media platform
sources as well. Specifically, we will seek to determine if the findings produced here
hold with other bot detection algorithms. Further extensions of this initial work will
closely examine any observable characteristics differentiating the emergent commu-
nities of interests. This will include narrative analysis through natural language pro-
cessing to determine any attempts by bots to polarize particular populations within the
conversations. The results from such an analysis could increase the relevancy of this
study by potentially extending the observable influence of social bots beyond online
social networks and into other social activities.

Acknowledgments. Special thanks to Nikan Chavoshi from New Mexico State University for
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